Variation of Zeta Functions

نویسنده

  • EYAL Z. GOREN
چکیده

1. The number of zeroes of a polynomial over a finite field 1 2. Interpretation in terms of zeta functions 3 2.1. Eigenvalues in the smooth case 4 2.2. Some easy examples 5 3. The Newton polygon 7 3.1. Newton polygons in families 8 4. Abstract Hodge polygons and Newton polygons 9 5. Results of Deligne, Katz, Mazur and Ogus 10 6. Some special cases 11 6.1. Abelian varieties 11 6.2. Curves 12 References 12

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dwork ’ s conjecture on unit root zeta functions

In this article, we introduce a systematic new method to investigate the conjectural p-adic meromorphic continuation of Professor Bernard Dwork’s unit root zeta function attached to an ordinary family of algebraic varieties defined over a finite field of characteristic p. After his pioneer p-adic investigation of the Weil conjectures on the zeta function of an algebraic variety over a finite fi...

متن کامل

Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function

Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.

متن کامل

Dynamical zeta functions for tree maps

We study piecewise monotone and piecewise continuous maps f from a rooted oriented tree to itself, with weight functions either piecewise constant or of bounded variation. We deene kneading coordinates for such tree maps. We show that the Milnor-Thurston relation holds between the weighted reduced zeta function and the weighted kneading determinant of f. This generalizes a result known for piec...

متن کامل

A Variation of Multiple L-values Arising from the Spectral Zeta Function of the Non-commutative Harmonic Oscillator

A variation of multiple L-values, which arises from the description of the special values of the spectral zeta function of the non-commutative harmonic oscillator, is introduced. In some special cases, we show that its generating function can be written in terms of the gamma functions. This result enables us to obtain explicit evaluations of them.

متن کامل

Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta functions

ABSTRACT Motivated essentially by recent works by several authors (see, for example, Bin-Saad [Math J Okayama Univ 49:37-52, 2007] and Katsurada [Publ Inst Math (Beograd) (Nouvelle Ser) 62(76):13-25, 1997], the main objective in this paper is to present a systematic investigation of numerous interesting properties of some families of generating functions and their partial sums which are associa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003